
Nonlinear transport at the strong intra-dot Coulomb interaction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Condens. Matter 18 L55

(http://iopscience.iop.org/0953-8984/18/5/L01)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 08:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/18/5
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) L55–L61 doi:10.1088/0953-8984/18/5/L01

LETTER TO THE EDITOR

Nonlinear transport at the strong intra-dot Coulomb
interaction

I Sandalov1 and R G Nazmitdinov2,3,4

1 Department of Condensed Matter Physics, Royal Institute of Technology, Electrum 229, SE-164
40 Stockholm-Kista, Sweden
2 Departament de Fı́sica, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
3 Max-Planck-Institut für Physik komplexer Systeme, D-01187 Dresden, Germany
4 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
141980 Dubna, Russia

E-mail: rashid@thsun1.jinr.ru

Received 20 December 2005
Published 20 January 2006
Online at stacks.iop.org/JPhysCM/18/L55

Abstract
Nonlinear transport is studied in the limit of weak and strong intra-dot Coulomb
interaction. The nonequilibrium self-consistent mean-field equations for one-
electron transition energies of an open dot and their spectral weights are derived
at the strong Coulomb interaction. In this limit populations of states involved
in tunnelling equalize upon the increase of the bias-voltage window even at low
temperature. This results in a simple analytical relation between the heights
of the current steps and the degeneracy of a spectrum in a two-dimensional
parabolic dot in a magnetic field.

(Some figures in this article are in colour only in the electronic version)

Recently, in experiments with a small quantum dot (QD) in the Coulomb-blockade regime [1], a
fine structure was observed in the conductance as a function of gate voltage versus source–drain
voltage. It was suggested that this phenomenon is mainly due to co-tunnelling [2]. The theory
of co-tunnelling [2], however, neglects specific quantum effects caused by a strong Coulomb
interaction (SCI), which affect the transition energies and the tunnelling rates. On the other
hand, numerous papers devoted to quantum effects in transport through QDs are focused on
the analysis of the Kondo phenomenon in single-level QD models (cf [3]) in a linear-response
regime, which is well understood nowadays. However, single-electron spectroscopy clearly
indicates that the shell structure of small dots plays an essential role in the transport at low
temperatures and weak dot–lead coupling [4]. This becomes more evident when the confining
energy exceeds the charging energy [5] (hereafter, this regime is called a weak Coulomb
interaction (WCI) regime). One of our goals is to present a self-consistent approach to nonlinear
transport through a multilevel QD in the SCI regime. We will demonstrate that even in this
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regime the shell structure of a small dot can be extracted from the analysis of nonlinear current
as a function of a finite bias voltage. We will also show that the conductance inside the Coulomb
diamond is governed by the spectral weights of one-electron transitions that complement the
co-tunnelling picture.

We consider a QD coupled to the left and right leads with free electrons, described by the
model Hamiltonian H = Hl + Hr + HQD + Ht . The term Hλ = ∑

k,σ εkσ c†
kσ ckσ describes

noninteracting electrons with the energy εkσ , wavenumber k and spin σ in the lead λ = l, r .
The closed dot is modelled by HQD = ∑

p εpn p + ∑
p �=p′ Upp′n pn p′ (n p = d†

pdp). Tunnelling

between the dot and leads is described by the term Ht = ∑
p;k,σ∈l,r vkσ ;pc†

kσ dp.
Suppose that the eigenvalue problem for the closed dot with interacting electrons is solved,

i.e. HQD|m〉 = Em |m〉. Here m is a composite index for many-body states: m = {Qm, Nm },
where Qm is a set of quantum numbers of Nm -particle eigenstates; Nm = 0, 1, . . . , N . Using
the Hubbard operator Xmn ≡ |m〉〈n| that represents the transition from the state |n〉 to the
state |m〉, the dot Hamiltonian can be written in a diagonal form HQD = ∑

m Em Xmm with the
normalization condition {dp, d†

p} = ∑
m Xmm = 1. For the tunnelling Hamiltonian we obtain

Ht = ∑
n,m;k,σ∈l,r vkσ ;n,mc†

kσ Xnm , where vkσ ;n,m = ∑
p vkσ ;p〈n|dp|m〉. Below, we focus on

transport in the resonant tunnelling regime, where Kondo physics is not involved.
Following [6], we obtain for the ‘left/right’ steady current:

Jl(r) = ie

h̄

∫
dω

2π

∑

bd

�
l(r)
db (ω){G<

bd(ω) + fl(r)(ω)[G R
bd(ω) − G A

bd(ω)]}. (1)

Equation (1) is derived in terms of Green functions (GFs) Gbd̄(t, t ′) = −i〈T Xb(t)Xd̄ (t)〉
defined for the Hubbard operators. Hereafter, a, b, c, . . . denote Fermi-like transitions Xa =
|Qm, Nm〉〈Q′

n, Nn | and Xā = |Q′
n, Nn〉〈Qm , Nm |(Nn = Nm +1) (as distinguished from Bose-

like transitions, X ξ = |Qm, Nm〉〈Q′
m , N ′

m |(N ′
m = Nm , Nm ± 2)). The commutation relations

are {Xb, Xd̄ } = εbd̄
ξ X ξ , [Xb, X ξ ] = α

bξ
c Xc, where εbd̄

ξ and α
bξ
c are the structure constants

of the algebra and a summation over repeating indices is implied. The width function in
equation (1) is �

l/r
db (ω) = ∑

v
l/r
d,kσ δ(ω − ε

l/r
kσ )v

l/r
kσ,b and fl/r (ω) = [1 + exp{β(ω − µl/r )}]−1,

where µl/r is a chemical potential in the left/right lead and β = 1/kT . We consider the
wide-band case. Then, the tunnelling matrix elements and the density of conduction electron
states g0 are slow functions of energy, i.e. |vl/r

kσ,b|2 � |v̄l/r |2 and gl/r
0 (ω) � gl/r

0 and, therefore,

�
l/r
db (ω) � �

l/r
d = πv̄2

l/r gl/r
0 . To shed light on the quantization effects in resonant transport,

we consider a weak dot–lead coupling, using the coupling v̄l/r gl/r
0 � 1 as a small parameter

of the theory.
The GFs for a real time are calculated with the aid of GFs Gbd for an imaginary time,

which are obtained by means of the diagram technique developed in [7] (below we refer
to this as I). The basic idea therein is to introduce Schwinger–Kadanoff–Baym auxiliary
sources (T exp{i ∫ Uξ X ξ }) for the Hubbard operators X ξ . This allows us to construct a closed
equation for the Hubbard GFs in terms of functional derivatives with respect to these sources,
D−1

0 G = P +V (P + iδ/δU)G, where Pcb̄ = 〈{Xc, Xb̄}〉U . Iterations of this equation generate
a perturbation expansion with respect to the interaction Vab = ∑

λ,kσ∈λ vλ
kσ,a C (0)λ

kσ vλ
kσ,b , where

C (0)
kσ = −i〈T ckσ (t)c†

kσ (t ′)〉 is a bare GF of conduction electrons in the lead λ. The equation for
zero GF is D−1

0a G0
a = Paā

0 , where the inverse locator D−1
0a = i∂t − �ā , �ā = EQ,N+1 − EQ′,N

and Paā
0 = 〈{Xa, Xā}〉(0). The perturbation V dresses both the locator D0a and so-called end-

factor Paā
0 . Since the right-hand side of the exact equation for the GF contains P , GF is sought

in the form Gab̄ = Dac Pcb̄.
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In this paper we use a mean-field approximation (MFA), where D = D0 + D0(V P +
loop)D. Here loop = iV D(δD−1

0 /δU) (see also equation (I.93)). The well-known Hubbard-
I approximation (see equation (I.75)) is obtained from the MFA by neglecting loop. The
nondiagonal terms involve, obviously, higher orders of the small parameter and we neglect
them.

Performing an analytical continuation of all the above equations from an imaginary time
axis to the Keldysh contour, we obtain G R/A

aā = (ω −�ā ± i�a Paā)−1 Paā with �a = �l
a +�r

a.
The ‘lesser’ GF has the form G<

aā = G R
aāV <

āa G A
aā = Paā f̄a La . Here, f̄a ≡ αl

a fl + αr
a fr ,

α
l/r
a = �

l/r
a /�a . The Lorentzian La = (Paā�a/π)/[(ω − �ā)

2 + (Paā�a)
2]−1 depends

on two unknowns: Paā and �ā. The quantities Paā can be found via the ‘lesser’ Green
function by making use of multiplication rules for the Hubbard operators at coinciding times,
e.g. 〈Xmn(t)Xnm(t)〉 = 〈Xmm(t)〉 = Nm(t). Since all GFs depend on the population numbers
(via Paā), the relation Nm = −i

∫
dω G<

aā(ω) is, actually, the equation of self-consistency,
which should be supplemented with the normalization condition

∑
m Nm = 1. All above

equations are valid for a finite strength of the electron–electron interaction Upp′ .
Below, we consider a strong Coulomb interaction (SCI) limit, U → ∞. In this limit

the normalization condition becomes X00 + ∑
p X pp = 1, Paā → P0 p = 〈X pp〉 + 〈X00〉 ≡

N0 + Np, while HQD → H̃QD = E0 X00+∑
p εp X pp and Ht → H̃t = ∑

p;k,σ∈l,r vkσ ;pc†
kσ X0 p.

Note that at zero coupling to the leads one-electron energies coincide in both WCI and SCI
regimes. This fact opens a nice opportunity to study in a transparent way the role of the
Coulomb interaction within this particular charge sector.

Let us choose E0 = 0 and assume that the electrochemical potentials of the metals are
placed within the region of the lowest transitions [0, p], i.e. at zero bias voltage µl = µr ∼
�

(0)
p0 ≡ (εp − E0) = εp. Calculating GFs according to the procedure described above, we

obtain from equation (1) in the limit U → ∞:

J = 2e

h̄

∫

dω
∑

p

P0 p L p(ω)�̄p
[

fl(ω) − fr (ω)
]
, (2)

where �̄p = �l
p�

r
p/�p and

Np = −i
∫

dωG<
0 p,p0(ω) = P0 p

∫

dωL p(ω) f̄ p(ω), N0 +
∑

p

Np = 1. (3)

The coupling to the contacts renormalizes bare transition energies �
(0)
p0 = εp; namely,

�p0 = �
(0)
p0 + loop, or, explicitly,

�p0 � εp + 4
∫

dω
∑

p1 �=p

(ω − �p10)L p1(ω) f̄ p1(ω)/P0 p1 . (4)

The expression for the current, equation (2), and the system of equations (3), (4) for a multilevel
dot, obtained within a nonequilibrium mean field theory, are our central result. Equation (4)
does not contain self-interaction: the renormalization occurs due to admixture of all other
transitions (excluding the nonelastic co-tunnelling [2]). We recall that a master-equation
approach (cf [8]) does not provide the widths in Lorentzians, the level shifts, equation (4), and
misses the self-consistency in the population of states. The shifts are absent in the Hubbard-I
approximation as well. Note that for the WCI regime the current is determined by the same
equation (2), where one should put P0 p = 1 and �p0 = εp.

At � � kT < �p0 (β� � 1) the integrals can be calculated analytically. For symmetric
coupling (�l

p = �r
p = �p/2) we have for the current

J = e

2h̄

∑

p

�p P0 p
[

fl(�p0) − fr (�p0)
]
. (5)
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The analogy with the Landauer–Büttiker formula is obvious: the current is still
proportional to the number of channels involved. The difference is that in the SCI regime each
channel contributes with its own spectral weight P0 p and both the energies �p0 and the spectral
weights P0 p of the transitions must be found self-consistently. These effects are specific for the
transport in the SCI regime and are missing in the theory of co-tunnelling [2].

At β� � 1, in the first order of the coupling parameter, the equations for population
numbers, equations (3), are solved analytically:

N0 =
(

1 +
∑

p

�p

)−1

, Np = �p

(

1 +
∑

p

�p

)−1

,

�p = e−β(�p0−µ) e−β(�p0−µ) + cosh (βeV/2)

1 + e−β(�p0−µ) cosh (βeV/2)
.

(6)

Here µ ≡ (µl + µr )/2. At eV → 0 the Gibbs’ statistics for in-dot states are restored
at the Fermi energy of metals. At low temperature kT < �p0 and fixed µ < �p0, when
2(�p0 − µ) < eV � U , for the states located in the ‘conductive window’ µr < �p0 < µl

(CW) the magnitude �p → 1 and N0 = Np = 1/(nW + 1). Here, nW is the number of one-
electron states involved into the resonant tunnelling. Thus, the applied bias voltage equalizes
the population numbers of the states within the CW at the SCI regime. Moreover, the lower the
temperature the faster this process sets in.

Now, we focus on shell effects that are much stronger than spin effects and have as yet not
been discussed in literature relating to quantum transport. We recall that for the closed dot one-
electron states are the same for the WCI and SCI regimes. Let us consider a dot with a circular
shape, ωx = ωy = ω0 in a perpendicular magnetic field B (cf [9]). The dot eigenmodes are

�± = (� ± ωc/2) with � =
√

ω2
0 + ω2

c/4 [10]. Here ωc = |e|
m∗c B .

At small eV and chosen fixed µ (or the gate voltage) the first transition �10 < µr and the
current, equation (5), is zero, in spite of P0 p �= 0 (N0 = 1) (see figure 1). At higher voltages the
CW contains nW electron states and, according to equations (3), (6), P0 p = 2/(nW + 1). As a
result, the SCI current is JSCI = 2J0nW /(nW + 1), where J0 = e

∑
p �p/[2h̄nW ] ≡ e�̃/(2h̄).

The WCI current, however, is JWCI = J0nW . Thus, even for a large bias voltage eV , the SCI
current is weaker than the WCI one, by factor of η = JSCI/JWCI = 2/(nW + 1) (until the other
charge sector is not switched on at eV ∼ U ).

The effect of degeneracy of the spectrum becomes transparent at the specific values of the
magnetic field

t0 ≡ ωc/ω0 = (r − 1)/
√

r (7)

where the ratio r = �+/�− = 1, 2, 3, . . .. We consider first r = 1, i.e. zero magnetic
field (figure 1). In this case, each shell k has the degeneracy gk = k + 1. If in the transport
window the last shell n is filled, the total number of states involved in the transport is nW +1 =
2
∑n

k=0(k +1)+1 = n2 +3n+3 (the 2 is due to the spin degeneracy). Consequently, the height
of the nth step in the SCI current is JSCI/J0 = 2(n + 1)(n + 2)/(n2 + 3n + 3), which is smaller
than the WCI current by factor η = 2/(n2 + 3n + 3). Since �p � e−β(�p0−µ)[1 + α (eV )2] at
small eV (see equations (6)), these effects cannot be seen in the linear conductance. Another
effect (which is not seen in the master-equation approach) follows from equation (4): the
coupling pushes the transition energies �p0 down compared with the bare energies εp, which
decreases the bias voltage threshold for the current to be observed.

For r = 2 (ωc/ω0 � 0.7) we find a new shell structure as if the confining potential were
a deformed harmonic oscillator without a magnetic field. The number of levels are just the
number of levels obtained from the two-dimensional oscillator with ω> = 2ω< (ω> and ω<



Letter to the Editor L59

0 2 4 6 8 10
0

2

4

6

Bias voltage, eV/ω
0

C
on

du
ct

an
ce

 G
S

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Bias voltage, eV/ω
0

P
op

ul
at

io
n 

nu
m

be
rs

0 2 4 6 8 10
0

0.5

1

1.5

2

C
ur

re
nt

 J
S
/J

0N
0
 

N
1
  

N
2
 

N
3
 

N
4
 

N
5
 

4/3 

12/7 

40/21 
24/13 

∆
10

 

ε
1
 

µ/ω
0
 = 0.15;  

T/ω
0
 = 0.03;    

Γ/ω
0
=0.001.

ε
1
=1 ∆

10
=0.225 

V 

Figure 1. Population numbers Np (left panel), the current JS/J0 and the conductance G S =
dJS/d(eV ) as a function of the bias voltage (right panel) in the SCI regime at zero magnetic field.
In each shell k we have 2(k + 1) degenerate orbitals characterized by the same Np (p = k + 1).
In particular, N0 = 〈X00〉, N1 = Nk=0,γ0=1 = Nk=0,γ0=2 etc, where γk is the orbital index in the
shell k. Arrows at the bias voltage axis indicate the position of the bare ε1 and the renormalized
�10 energies from the shell k = 0. Their exact values and the parameters of the calculations are
displayed in the left panel. In the right panel, the rational numbers characterize the height of the nth
step in the SCI current, JSCI/J0 = 2(n + 1)(n + 2)/(n2 + 3n + 3), for the last filled shell n.

denote the larger and smaller value of the two frequencies). In this case nW = (n + 2)2/2 if
the last filled shell is even, and nW = (n + 1)(n + 3)/2 if it is odd, and these numbers define
the heights of steps in both the WCI (right panel of figure 2) and SCI regimes.

These features of the spectrum can be imaged by the conductance measurements. In
particular, the results for the differential conductance dJ/d(eV ) at the WCI regime (left panel
of figure 3) resemble very much the experimental conductance discussed in [5]. An increase in
the magnetic field brings in the CW states with a large magnetic quantum number m = n−−n+
and pushes up the ones with −m. This gives oscillations in the current. They are suppressed
together with the current itself in the SCI regime. The shrinking of the parameter region with a
non-zero current in the SCI regime is clearly seen from a comparison of the left and right panels
of figure 3 plotted within the same scale. The amplified fine structure of the SCI conductance
is displayed in the insertion. Although the shell structure is manifested in the fine structure in
the SCI case too, it is strongly suppressed by the intra-dot correlations.

In summary, we derived the expression for the current, equation (2), through a multilevel
dot at non-zero temperature in the nonequilibrium mean-field theory for the SCI regime. The
nonlinear transport is determined by the spectral weights, equations (3), of the dot states,
equation (4), renormalized due to the coupling to the leads. At strong Coulomb interaction
and small coupling to the leads, the population numbers, calculated analytically, display an
equalization at high bias voltages. In this limit we obtain a simple expression which relates the
height of the nth step in the current to a number of states participating in the transport. In the
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Figure 2. Magnetic field (ωc/ω0) dependence of: (a) the Fock–Darwin spectrum (in units ω0);
(b) the tunnelling current JWCI (in units J0 = �̄/4h) through the quantum dot; arrows indicate the
cuts in the planes that correspond to the fields ωc/ω0 = 0.0, 0.34, 0.7, respectively. The degeneracy
at ωc/ω0 = 0.0, 0.7 is clearly seen in jumps of the current.
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Figure 3. The magnetoconductance G = dJ/eV at the WCI (left) and the SCI regimes (right).
The WCI magnetoconductance displays the Fock–Darwin spectrum with clearly expressed shell
structure. The SCI magnetoconductance is compressed due to the sum rule for population numbers
and is very low above 2eV/ω0. The insertion displays the structure of G in the region 0–1.8.
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WCI regime, at specific values of the magnetic field, equation (7), we predict a drastic increase
of the current through the dot due to the shell effects. Tuning the magnetic field near such
specific points can be used to construct magnetic-field sensitive switch on–off devices.
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